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Abstract. Taking the two-local-spin-mediated interaction as a Cooper pair interaction, using
the BCS (Bardeen–Cooper–Schrieffer) gap equation and the phase-coherence condition for
quantum phase fluctuation, this paper explains basic experimental findings concerning both p-
type La2−xSrxCuO4 (LSCO) and n-type Nd2−xCexCuO4 (NCCO) at the same time, and predicts
that the pseudogap should be clearly observed for underdoped NCCO.

1. Introduction

The pairing mechanism responsible for superconductivity in the high-Tc cuprates is still
unknown. We hope that if we study p-type LSCO and n-type NCCO at the same time, then the
corresponding pairing mechanism will be more convincing. LSCO and NCCO have the same
conductive CuO2 plane [1]. The crystal structure of NCCO is similar to that of LSCO. The
only difference between the two structures is that each copper atom is bonded to four oxygen
atoms in NCCO, whereas the copper is surrounded by an octahedron of oxygens in LSCO [1].

LSCO is a p-type superconductor [1], has a d-wave order parameter [2–4], a pseudogap
[4], and a very large value of 2�(0 K)/Tc [4]. The doping range of superconductivity for
LSCO is 0.5 < x < 0.27 [4]. Here and in the following, x is the number of carriers in one
unit cell in the CuO2 plane.

NCCO is a n-type superconductor [1]. The doping range of superconductivity for NCCO
is 0.12 < x < 0.20 [5]. Using the phase-sensitive capability of tunnelling spectroscopy,
Kashiwaya et al did not observe a zero-bias conductance peak (ZBCP), and concluded that
the suggestion of d-wave symmetry should be rejected [6]. It was widely believed that
NCCO is of s-wave type. The main experimental evidence for this comes from studies of
the in-plane penetration depth λab(T ) [7, 8]. Considering the paramagnetism arising from
Nd3+ ions, Cooper altered the limiting temperature dependence of λab(T ) − λab(0) from
an exponential behaviour to T 1- or T 2-behaviour associated with d-wave pairing [9]. See
also reference [10] on this. However, correcting the measured λab(T ) dependence for the
temperature-dependent susceptibility due to the Nd3+ moments, Alff et al still insisted on an

¶ Author to whom any correspondence should be addressed. Address for correspondence: Chang Chun Yuan,
Building 56, Room 502, Beijing University, Beijing 100871, People’s Republic of China.

0953-8984/00/398475+11$30.00 © 2000 IOP Publishing Ltd 8475



8476 Fu-sui Liu and Wan-fang Chen

exponential dependence indicating isotropic s-wave pairing [11]. Note that the quasiparticle
tunnelling conductance spectra of NCCO closely resemble those of d-wave LSCO and YBCO
[6, 11]. Pair tunnelling measurements indicate the product of the critical current and the
junction normal-state resistance (IcRN ) to lie between 0.5 and 6 µV for Pb/NCCO c-axis-
oriented films and single crystals [12]—almost three orders of magnitude smaller than the
3 mV Ambegaokar–Baratoff limit expected for an s-wave superconductor. It is noteworthy
that the values of ratio 2�(0 K)/Tc obtained by different methods are quite different. The
values of 2�(0 K)/Tc from penetration depth experiments are 3.9–4.5 for Tc = 21, 21.5,
and 22 K [8], and 2.9 for Tc = 24 K [11]. The value of 2�(0 K)/Tc measured as the
peak-to-peak value in the conductance spectra in the Cu–O bond direction is about 6, and
�(2.2 K) = 6.15 meV for Tc = 24 K [11].

Recently, Tsuei and Kirtley presented very powerful and conclusive evidence from a
tricrystal phase-sensitive experiment that NCCO has d-wave symmetry [13]. There is no
detectable imaginary component of the order parameter for NCCO [13, 14]. Therefore, in
our view, the present main problem is that of how to explain the lack of a ZBCP and the
‘exponential’ behaviour of λab(T ) for NCCO on the premise of the d-wave symmetry, and to
put an end to arguments regarding the possibility of s-wave symmetry. A present secondary
problem is that of how to judge whether the symmetry in NCCO is a pure d-wave one or a
predominantly d-wave one with a small s-wave component. A present third problem is that of
discovering why different measurement methods give very different values of 2�(0 K)/Tc.

This paper gives a unified explanation for all of the above experimental facts by taking
the two-local-spin-mediated interaction (TLSMI) as a pairing interaction, and predicts that
the pseudogap should be observed clearly for underdoped NCCO. In section 2 we derive a
generic formula for Tc independent of any special mechanism by using the long-range phase-
coherence condition. In section 3 we briefly introduce the concept of TLSMI proposed in
references [16, 17]. The basic theoretical method given in references [16, 17] is the extended
Abrikosov pseudo-fermion method [18, 16]. In section 4 we discuss the values of related
parameters. In section 5 we give the results from our numerical calculations in order to
explain the experimental facts, and to make some predictions. In section 6 we make some
interesting conjectures.

2. Determination of Tc

In this section, we derive a generic formula for Tc independent of any special mechanism
by using the long-range phase-coherence condition. There are many papers in which Tc is
determined from the long-range phase-coherence condition [19–22]. We decided to use the
quantum XY -model described in reference [21]. There are three reasons for this.

• First, Emery and Kivelson [19, 20] showed that the value of Tc determined using the
quantum XY -model in reference [21] is less than that determined using the classical
XY -model in references [19, 20, 22].

• Second, in our view, the classical XY -model is not appropriate to the high-Tc cuprates.
According to the classicalXY -model, Tc ∝ x. Therefore, the value ofTc can never become
zero at x = 0.05 and 0.12 in the cases of LSCO and NCCO, respectively. However, the
experimental values of Tc at x = 0.05 and 0.12 are zero for both LSCO and NCCO.
Although Uemura et al claimed that their experiments show Tc ∝ x/m∗ [23, 24], we
should note that they never measured Tc at small values of x for the high-Tc cuprates.

• Third, the deviations of the theoretical values of Tc from the experimental values are too
large [19, 20].
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In our picture, the disappearance of superconductivity above Tc does not involve Cooper pair
breaking as it would for phonon-mediated superconductors where the BCS coherence length
is generally longer than the mean free path for the carriers; instead, it is associated with
the loss of long-range superconducting phase coherence as the Coulomb energy required to
suppress charge fluctuations prevails over the tendency towards long-range superconducting
phase order maintained by the Ginzburg–Landau phase-stiffness parameter, Jstiffness. Doniach
and Inui gave the critical value of Jstiffness, Jc, at Tc as [21]

Jc � 2e2

ε∞a0(Tc)
(1)

where ε∞ is the high-frequency dielectric constant, typically in the range from 1 to 4 [25],
e the free-electron charge, and a0(Tc) the mean pair spacing at Tc. For Jstiffness � Jc, the
system remains a superconductor. The phase-stiffness parameter may be computed from an
expansion of the appropriate Cooper pair correlation function in powers of the wavenumber q
[21]. The formula used in reference [21] to determine the value of Tc from the condition for
appearance of long-range phase coherence is approximately

|�(Tc)|2 lim
q→0

1

a2
0(Tc)

∂

∂q2
[L(q)]−1 = 2e2

ε∞a0(Tc)
(2)

where �(Tc) is the order parameter at Tc, and q the wavenumber. For the CuO2 plane of the
high-Tc cuprates,

a2
0(Tc) = 2a2

Cu

x|�(Tc)|2 . (3)

Note that equation (2) does not involve the form of the pair interaction. Also,

L(q) =
∑

k

[
1

2Ek

− EkEk+q + ξkξk+q

EkEk+q(Ek + Ek+q)

]
(4)

Ek = ξk + �(k, 0) (5)

ξk = ε(k)− EF (6)

where �(k, 0) is the gap at 0 K:

�(k, T ) = �(T )G(k). (7)

Assume that the maximum value of G(k) is one. Note that �(k, T ) in equation (7) can
be caused by any pairing mechanism. Then equation (2) can be simplified by making the
following two approximations: the effective-mass approximation for ε(k); and using �(0)/2
as the average value of �(k, 0). Hence for the CuO2 plane,

L(q) = a2m∗

4π

[
1 +

k2
F q

2

9(m∗)2(�(0)/2)2

]
(8)

where m∗ is the effective mass of the carrier. The relation between the order parameter and
the gap is

|�(Tc)| = �(Tc)

�(0)
. (9)

Substituting equations (3), (8), and (9) into equation (2) yields

|�(Tc)|3 = �(0)2

√
xk2

F

9
√

2a3
Cue

2(m∗)3

8πε∞
. (10)
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Equation (10) is a general theoretical formula for Tc versus x, which is still independent of
any particular model for the pair interaction in the CuO2 plane. The key point as regards using
equation (10) is that one needs to know the relation between the gap and temperature T—which
is needed to solve the BCS gap equation—and, therefore, to know the relation describing the
concrete pair interaction.

The value of Tc determined above corresponds to establishing the long-range phase
coherence of the order parameter. Therefore, Tc should be called the pairing temperature with
phase coherence. Correspondingly, the temperature T ∗ for the opening of a gap at the Fermi
surface should be called the pairing temperature without phase coherence. A gap appearing in
the range Tc < T < T ∗ is called a pseudogap.

3. The pairing interaction

The effective Hamiltonian of the Hubbard–Emery d–pσ model used to describe the CuO2

plane of p-type cuprates is given clearly by reference [26]; it is

H = −
∑
iαβs

Tαβp
+
αspβs + JK

∑
iαβss ′

Ŝi · �σss ′p+
αspβs ′ + J

∑
i =j

Ŝi · Ŝj (11)

where the summation over α and β is for the oxygen sites around the ith Cu2+ site, pαs
annihilates an Opσ hole with spin s at site α, Ŝi is the local spin operator of Cu2+ at site i, �σ is
the Pauli matrix vector, and i and j are the nearest neighbours. Expand pαs in k-space. Here
k is the wave vector in the Brillouin zone of the oxygen lattice in the CuO2 plane. The second
term in equation (11) is the Kondo Hamiltonian, HK , which implies that the Opσ holes with
wave vectors k↑ and −k↓ can have interactions with the local spins of Cu2+ at sites i and j ,
respectively. The third term in equation (11), on the other hand, is the Heisenberg interaction,
HH , between the two local spins at sites i and j . The effective interaction between the two Opσ

holes with wave vectors k↑ and −k↓, mediated by HK , HH , and HK , is called the TLSMI.
Using the extended Abrikosov pseudo-fermion method described in references [16, 18],

the expression for the TLSMI Ukk′ = −A(T )Fkk′ is [16, 17]

Ukk′ = −A(T )Fkk′ (12)

A(T ) = JJ 2
K(1 + C)N ′′/N ′w(J/T )

T 2 + 16JJ 2
K

∑
kp g(k,p)/{1 + 32π2J 2

K [N(EF )]2h(q)} (13)

g(k,p) =
(

1

2NCu

)2
f [ε(k)− EF ]F1(k)F1(p)F5(k)F5(p)

ε(k)− ε(p)
(14)

h(q) = [cos(qxa/2)cos(qya/2)]4 (15)

Fkk′ =
4∑
i=1

Fi(k)Fi(k
′)F5(k)F5(k

′) (16)

F1(k) = cos(kxa)cos(kya) (17)

F2(k) = sin(kxa)sin(kya) (18)

F3(k) = sin(kxa)cos(kya) (19)

F4(k) = cos(kxa)sin(kya) (20)

F5(k) = cos2(kxa/2)cos2(kya/2) (21)
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where f (x) is the Fermi distribution, ε(k) is the energy of the Opσ holes, EF is the Fermi
energy, N(EF ) is the density of states, C is the weak tunnelling coupling between two CuO2

planes if the cuprates have two CuO2 planes in a unit cell, N ′ is the number of Cu2+ in a cluster
with antiferromagnetic short-range order in the CuO2 plane, and N ′′ is the number of Cu2+

in the nearest-neighbour position in the same cluster. The bar represents the average over a
Fermi surface. w(J/T ) is the transformation factor in the extended Abrikosov pseudo-fermion
method [16].

If J > 0, then the TLSMI between two Opσ holes with wave vectors k↑ and −k↓, Ukk′ ,
is negative, which means that the TLSMI can become the Cooper pair interaction of the two
Opσ holes in regions with, at least, antiferromagnetic short-range order. There are also the
phonon-mediated interaction, Vep, and the effective Coulomb interaction, V ∗

c , between the two
Opσ holes with wave vectors k↑ and −k↓ besides the TLSMI. Considering all the interactions,
the BCS gap equation is [16]

�′(T ,k) = −
∑
k′

Vkk′�′(T ,k′)
2m(T ,k′)

tanh
m(T ,k′)

2T
(22)

m(T ,k) =
√

[ε(k)− EF ]2 + |�′(T ,k)|2 (23)

Vkk′ =



Vep + V ∗

c 0 � |ε(k)− EF |, |ε(k′)− EF | � ED

Ukk′ 0 � |ε(k)− EF |, |ε(k′)− EF | � EF

0 otherwise

(24)

where �′(T ,k) is a gap function in the CuO2 plane, and ED the Debye energy. Considering
that ε(k) generally has even parity, Vep and V ∗

c are constants, F1(k), F2(k), and F5(k) have
even parity, and F3(k) and F4(k) have odd parity, the BCS gap equation can be separated into
four decoupled equations, and has the following four solutions:

�′
s(T ,k) = �1(T ) + �2(T )F1(k)F5(k) (25)

�′
d(T ,k) = �3(T )F2(k)F5(k) (26)

�′
p1(T ,k) = �4(T )F3(k)F5(k) (27)

�′
p2(T ,k) = �5(T )F4(k)F5(k). (28)

Note that in a coordinate system k′ obtained by rotating the system k by 45◦,

F2(k
′) = [cos(k′

xaCu)− cos(k′
yaCu)]/2.

That is,F2(k
′) is the frequently encountered d wave. Because�′

d(T ,k) containsF5(k) besides
F2(k), we call �′

d(T ,k) the composite d wave.
It is easy to understand that the effective Hamiltonian (11) can also describe the CuO2

plane of the n-type cuprates in principle, because the structures of the d–pσ model Hamiltonian
in equation (2.1) of reference [26] should be similar for LSCO and NCCO. The main difference
between the two types is in the form of the Fermi surface. The Fermi surfaces are near the lower
Hubbard band top and the upper Hubbard band bottom for LSCO and NCCO, respectively.
The Fermi surfaces of LSCO and NCCO with x = 0.15 are shown in figure 1.

4. Values of related parameters

The values of the parameters appearing in the expressions for the TLSMI in equations (12)
and (13) and in the BCS gap equation, equations (22), (23), and (24), have been determined
from experiments and first-principles calculations for the p-type cuprates, and they are given
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A

B

C

D

E

F

kx

ky

O

Figure 1. Fermi surfaces of LSCO and NCCO in one quadrant. The line AB is the lower Hubbard
band top and upper Hubbard band bottom for LSCO and NCCO, respectively. The lines CD and EF
are the Fermi surfaces for LSCO and NCCO, respectively. The line CD has negative energy. The
mathematical expression for line CD is given in reference [16]. The line EF has positive energy.
The lines CD and EF are symmetric, in contrast to line AB.

in reference [16]. Because the CuO2 plane of NCCO is nearly the same as that of LSCO,
the values of related parameters should also be nearly the same for the two. For example,
J = 0.126 eV and 0.107 eV for LSCO and NCCO at x = 0, respectively [27, 28]. For NCCO
the AF long-range coherence length persists until x = 0.12 [28, 29]. Therefore, N ′′/N ′ = 2
from the definition ofN ′′ andN ′ in section 3. To obtain the values ofN ′′/N ′ from x for LSCO,
reference [16] uses figure 3 of reference [17], which gives the relation between N ′′/N ′ and
the AF short-range coherence length ξ , and the experimental data, which give the values of ξ
derived from x. In the case of NCCO, we lack experimental data relating ξ and x. Qualitatively,
the smaller the value of x, the larger the value of ξ . We know from figure 3 of reference [17]
that the larger the value of ξ , the larger the value ofN ′′/N ′. We take it that the values ofN ′′/N ′

0.0 0.1 0.2 0.3
0

50

100

150

x

T
(K

) 1

2
3

A
F

Figure 2. The phase diagram of LSCO. Lines 1 and 2 are our theoretical curves for T ∗ and Tc
versus x, respectively. The solid circles and the open circles are the data for Tc and T ∗ versus
x, respectively [4]. The AF insulator is at x < 0.02 [28, 29]. The Cooper pairs without phase
coherence are in the region enclosed by lines 1, 2, and 3.
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decrease approximately linearly from 2 at x = 0.12 to 1.1 at x = 0.2. The electron–phonon
coupling constant λ = N(EF )Vep

∼= 0.1 for LSCO [30]. µ∗ = N(EF )V
∗
c = 0.15 [31].

5. Results from numerical calculations

Our numerical calculations show that the order parameter of LSCO is the d-wave one given
in equation (26). For LSCO, λ < µ∗. Therefore the electron–phonon interaction makes
no contribution to the superconductivity of LSCO. From figure 2 we see that the theoretical
curve for Tc versus x fits the data in reference [4] well. T ∗ in figure 2 is determined only
by the zero-gap condition for the BCS gap equation. Therefore, there is a pseudogap at
Tc < T < T ∗, which comes from the formation of a Cooper pair without long-range phase
coherence. Figure 3 shows clearly that the values of the ratio 2�(0 K)/Tc can be very large for
LSCO. For completeness, we give the theoretical curve and the experimental data for �(0 K)
versus x in figure 4.

0.0 0.1 0.2 0.3
0

5

10

15

x

Figure 3. The lower and the upper solid lines are our theoretical curves for 2�(0 K)/T ∗ and
2�(0 K)/Tc versus x for LSCO, respectively. The solid circles and open circles are the cor-
responding data [4]. Here and in all the following diagrams, �(0 K) is the d-wave gap in
equation (26), at T = 0 K and along the Cu–O bond direction.

0.0 0.1 0.2 0.3
0

10

20

x

∆
(0

K
) 

(m
eV

)

Figure 4. The theoretical curve for �(0 K) versus x for LSCO. The data come from reference [4].
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Figure 5 is our theoretical phase diagram for NCCO. Its basic structure is the same as that
of LSCO. Both our theory and the experiment in reference [5] show that the doping range of
superconductivity for NCCO is much narrower than that of LSCO. The pseudogap exists in the
range enclosed by the lines 1, 2, and 3, which has not yet been found by experiment. Figure 6
shows that the theoretical value of 2�(0)/Tc can be much larger than the BCS value, 3.53.
Figure 7 indicates that the smaller the value of x, the larger the value of �(0 K) for x > 0.12.
Figure 8 shows the gap anisotropy of NCCO. It is very important to note that there is no state
between the two directions of the lines OF and OB in figure 1.

0.0 0.1 0.2
0

10

20

30

40

50

x

T
(K

)

1

2

3

AF

Figure 5. The phase diagram of NCCO. The lines 1 and 2 are our theoretical curves for T ∗ and Tc
versus x, respectively. The solid circles are the data for Tc versus x from reference [5].

0.10 0.15 0.20
4

6

8

x

Figure 6. The lower and the upper solid lines are our theoretical curves for 2�(0 K)/T ∗ and
2�(0 K)/Tc versus x for NCCO, respectively. The solid circle represents data from reference [6].

Our theory can provide answers to the three problems regarding the contradictory
experimental results on NCCO posed in section 1. We do not know the value of λ for NCCO.
If we assume λ = 0.2, which is already much larger than the experimental value for LSCO,
µ∗ = 0.15, andED = 1000 K, then Tc,phonon = 10−4 K, which means that the electron–phonon
interaction does not make a contribution to the superconductivity of NCCO. Our numerical
calculations also indicate that the s wave of the TLSMI in equation (12) makes no contribution
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0
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K
) 
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eV

)

Figure 7. The theoretical curve for �(0 K) versus x for NCCO. The solid circle comes from
reference [11].

0 15 30 45
0

5

∆
(0

K
) 

(m
eV

)

φ (degrees)

Figure 8. The gap anisotropy at T = 0 K for NCCO with x = 0.15. 0◦ corresponds to the direction
of the Cu–O bond. The gap at 40.42◦ corresponds to the gap at point F in figure 1.

to the superconductivity of NCCO. Briefly, our theory shows that the superconductivity of
NCCO should be the pure d-wave one described by equation (26).

Now we answer the main problem posed in section 1. Alff et al obtained values for the
gap at T = 0 K for identical samples using two different methods in reference [11]. The first
method is that in which Alff et al measured the tunnelling conductance spectra of NCCO with
Tc = 24 K and x = 0.15, and obtained �(2.2 K) = 6.15 meV in the Cu–O bond direction.
The second method is that on the basis of which Alff et al reached the conclusion that NCCO
is of isotropic s-wave type, by fitting the λab(T ) data with �(0 K) = 3 meV. It is obvious that
the two values are too different. Our theory can explain this difference. Figure 8 indicates that
�(0 K) = 6.02 meV along the Cu–O bond direction, and the average value of the gap at 0 K
in all directions is about 3.2 meV. Therefore, combining the two values in reference [11] and
our theory, we can say that the isotropic s-wave conclusion is unreliable. Figure 8 shows that
although there is no gap node in NCCO, the gap at 40.42◦ is only 0.4 meV, i.e., really very
small. This is why Luke et al cannot reliably distinguish between possible forms, i.e., T 1, T 2,
and exponential, of λab(T ) at low temperature [10].



8484 Fu-sui Liu and Wan-fang Chen

Why is it that Kashiwaya et al cannot observe a ZBCP if the symmetry of the super-
conductivity in NCCO is a d-wave one? As is well known, many experiments support the
suggestion that the origin of the ZBCP is an Andreev bound state at the surface of a d-wave
superconductor [15]. Figure 1 shows that there is no state for the angles between the lines
OF and OB. Therefore, there is definitely no Andreev bound state for a small angle of the
quasiparticle trajectory to the surface normal for a (110)-oriented surface. It must also be
noted that—besides our theory—the ZBCP can be suppressed by disorder [15].

Combining reference [11] and our theory, we know that the value of the gap along the
Cu–O bond direction measured from conductance spectra is maximal, and the value of the gap
obtained by fitting measured penetration depths is only an average value for an anisotropic
gap. Therefore, it is easy to understand why the values of �(0 K) and 2�(0 K)/Tc derived in
the former manner are larger than the values derived in the latter manner.

6. A possible s-wave superconductor

If we can make a compound M2−xNxCuO4, then we can definitely make the lower Hubbard
band not full through changing the valences of M and N, and the magnitude of x. If this
material exhibits superconductivity caused by the TLSMI, then the symmetry of the order
parameter should be the s-wave one, given by equation (25). The reason for this is as follows.
The TLSMI in equation (12) and the gap in equation (25) contain a term cos(kxa) cos(kya).
This term will make a larger contribution to the gap equation due to the small values of kxa
and kya near the bottom of lower Hubbard band. In contrast, the d wave makes only a small
contribution to the gap equation, due to the factor sin(kxa) sin(kya) and the small values of kxa
and kya in this case. The s-wave expression of equation (25) contains two terms. One comes
from the TLSMI. The other comes from electron–phonon interaction. The superconductivity
caused by both the TLSMI and the electron–phonon interaction might have a higher value of
Tc than that caused by just one interaction.
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